🐍 classify_Train.py (Python) 10.7 KB 2021-12-07
Python module for classify Train
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52 | from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn import model_selection, naive_bayes, svm
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.multiclass import OneVsRestClassifier
from tabulate import tabulate
from sklearn.svm import SVC
from sklearn.svm import LinearSVC
import logging
import datetime
import pprint
import codecs
import numpy as np
import dill # wichtig für joblib load and dump
import os
import math
import nltk # the natural langauage toolkit, open-source NLP
import pandas as pd # pandas dataframe
import re # regular expression
from nltk.corpus import stopwords
from gensim.utils import lemmatize
from gensim import parsing # Help in preprocessing the data, very efficiently
import gensim
import numpy as np
import pprint
import lxml
import codecs
import os,sys
import gzip
import json
import os
#root@v22020089423124746:/home/seo-auto-scaler/data# python3 extractor_dreizweieins.py && python3 extractor_ecommerce-vision.py && python3 extractor_seokratie.py && python3 extractor_seonative.py && python3 extractor_seotrainee.py
pp = pprint.PrettyPrinter(indent=4)
logging.basicConfig(level=logging.INFO)
np.random.seed(500)
a = datetime.datetime.now()
# Save Models
svc_obj = "/home/seo-auto-scaler/svm/svc.dill"
tfidf_obj = "/home/seo-auto-scaler/svm/tfidf.dill"
#svc_obj = "/dev/shm/binarys/svc_large1.dill"
#tfidf_obj = "/dev/shm/binarys/tfidf_large1.dill"
... [truncated, 298 more lines] ...
|
{
"@context": "https://schema.org",
"@type": "SoftwareSourceCode",
"name": "classify_Train.py",
"description": "Python module for classify Train",
"dateModified": "2021-12-07",
"dateCreated": "2025-03-23",
"contentSize": "10.7 KB",
"contentUrl": "https://www.artikelschreiber.com/opensource/seo-auto-scaler/version2/svm/classify_Train.py",
"encodingFormat": "application/x-python",
"programmingLanguage": {
"@type": "ComputerLanguage",
"name": "Python"
},
"codeRepository": "https://www.artikelschreiber.com/opensource/seo-auto-scaler/version2/svm/"
}
🐍 classify_test.py (Python) 10.5 KB 2021-12-07
Python module for classify test
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52 | from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn import model_selection, naive_bayes, svm
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.multiclass import OneVsRestClassifier
from tabulate import tabulate
from sklearn.svm import SVC
from sklearn.svm import LinearSVC
import logging
import datetime
import pprint
import codecs
import numpy as np
import dill # wichtig für joblib load and dump
import os
import math
import nltk # the natural langauage toolkit, open-source NLP
import pandas as pd # pandas dataframe
import re # regular expression
from nltk.corpus import stopwords
from gensim.utils import lemmatize
from gensim import parsing # Help in preprocessing the data, very efficiently
import gensim
import numpy as np
import pprint
import lxml
import codecs
import os,sys
import gzip
import json
import os
pp = pprint.PrettyPrinter(indent=4)
logging.basicConfig(level=logging.INFO)
np.random.seed(500)
a = datetime.datetime.now()
# Save Models
#svc_obj = "/home/unaiqueFRAMEWORK/text_classify/binarys/svc_20190803.dill"
#tfidf_obj = "/home/unaiqueFRAMEWORK/text_classify/binarys/tfidf_20190803.dill"
#svc_obj = "/dev/shm/binarys/svc_20190803.dill"
#tfidf_obj = "/dev/shm/binarys/tfidf_20190803.dill"
svc_obj = "/home/unaiqueFRAMEWORK/new_prototyp/svm/model/svc_20191102_bigger.dill"
... [truncated, 288 more lines] ...
|
{
"@context": "https://schema.org",
"@type": "SoftwareSourceCode",
"name": "classify_test.py",
"description": "Python module for classify test",
"dateModified": "2021-12-07",
"dateCreated": "2025-03-23",
"contentSize": "10.5 KB",
"contentUrl": "https://www.artikelschreiber.com/opensource/seo-auto-scaler/version2/svm/classify_test.py",
"encodingFormat": "application/x-python",
"programmingLanguage": {
"@type": "ComputerLanguage",
"name": "Python"
},
"codeRepository": "https://www.artikelschreiber.com/opensource/seo-auto-scaler/version2/svm/"
}
🐍 classify_testAll.py (Python) 11.3 KB 2021-12-07
Python module for classify testAll
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52 | from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn import model_selection, naive_bayes, svm
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.multiclass import OneVsRestClassifier
from tabulate import tabulate
from sklearn.svm import SVC
from sklearn.svm import LinearSVC
import logging
import datetime
import pprint
import codecs
import numpy as np
import dill # wichtig für joblib load and dump
import os
import math
import nltk # the natural langauage toolkit, open-source NLP
import pandas as pd # pandas dataframe
import re # regular expression
from nltk.corpus import stopwords
from gensim.utils import lemmatize
from gensim import parsing # Help in preprocessing the data, very efficiently
import gensim
import numpy as np
import pprint
import lxml
import codecs
import os,sys
import gzip
import json
import os
pp = pprint.PrettyPrinter(indent=4)
logging.basicConfig(level=logging.INFO)
np.random.seed(500)
a = datetime.datetime.now()
# Save Models
#svc_obj = "/home/unaiqueFRAMEWORK/text_classify/binarys/svc_20190803.dill"
#tfidf_obj = "/home/unaiqueFRAMEWORK/text_classify/binarys/tfidf_20190803.dill"
#svc_obj = "/dev/shm/binarys/svc_20190803.dill"
#tfidf_obj = "/dev/shm/binarys/tfidf_20190803.dill"
svc_obj = "/home/unaiqueFRAMEWORK/new_prototyp/svm/model/svc_20191107.dill"
... [truncated, 315 more lines] ...
|
{
"@context": "https://schema.org",
"@type": "SoftwareSourceCode",
"name": "classify_testAll.py",
"description": "Python module for classify testAll",
"dateModified": "2021-12-07",
"dateCreated": "2025-03-23",
"contentSize": "11.3 KB",
"contentUrl": "https://www.artikelschreiber.com/opensource/seo-auto-scaler/version2/svm/classify_testAll.py",
"encodingFormat": "application/x-python",
"programmingLanguage": {
"@type": "ComputerLanguage",
"name": "Python"
},
"codeRepository": "https://www.artikelschreiber.com/opensource/seo-auto-scaler/version2/svm/"
}
🐍 classify_testAllManager.py (Python) 11.2 KB 2021-12-07
Python module for classify testAllManager
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52 | from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn import model_selection, naive_bayes, svm
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.multiclass import OneVsRestClassifier
from tabulate import tabulate
from sklearn.svm import SVC
from sklearn.svm import LinearSVC
import logging
import datetime
import pprint
import codecs
import numpy as np
import dill # wichtig für joblib load and dump
import os
import math
import nltk # the natural langauage toolkit, open-source NLP
import pandas as pd # pandas dataframe
import re # regular expression
from nltk.corpus import stopwords
from gensim.utils import lemmatize
from gensim import parsing # Help in preprocessing the data, very efficiently
import gensim
import numpy as np
import pprint
import lxml
import codecs
import os,sys
import gzip
import json
import os
pp = pprint.PrettyPrinter(indent=4)
logging.basicConfig(level=logging.INFO)
np.random.seed(500)
a = datetime.datetime.now()
# Save Models
#svc_obj = "/home/unaiqueFRAMEWORK/text_classify/binarys/svc_20190803.dill"
#tfidf_obj = "/home/unaiqueFRAMEWORK/text_classify/binarys/tfidf_20190803.dill"
#svc_obj = "/dev/shm/binarys/svc_20190803.dill"
#tfidf_obj = "/dev/shm/binarys/tfidf_20190803.dill"
svc_obj = "/home/unaiqueFRAMEWORK/new_prototyp/svm/model/svc_20191102_bigger.dill"
... [truncated, 309 more lines] ...
|
{
"@context": "https://schema.org",
"@type": "SoftwareSourceCode",
"name": "classify_testAllManager.py",
"description": "Python module for classify testAllManager",
"dateModified": "2021-12-07",
"dateCreated": "2025-03-23",
"contentSize": "11.2 KB",
"contentUrl": "https://www.artikelschreiber.com/opensource/seo-auto-scaler/version2/svm/classify_testAllManager.py",
"encodingFormat": "application/x-python",
"programmingLanguage": {
"@type": "ComputerLanguage",
"name": "Python"
},
"codeRepository": "https://www.artikelschreiber.com/opensource/seo-auto-scaler/version2/svm/"
}