package org.bouncycastle.math.ec; import java.math.BigInteger; import java.util.Random; public abstract class ECFieldElement implements ECConstants { BigInteger x; protected ECFieldElement(BigInteger x) { this.x = x; } public BigInteger toBigInteger() { return x; } public abstract String getFieldName(); public abstract ECFieldElement add(ECFieldElement b); public abstract ECFieldElement subtract(ECFieldElement b); public abstract ECFieldElement multiply(ECFieldElement b); public abstract ECFieldElement divide(ECFieldElement b); public abstract ECFieldElement negate(); public abstract ECFieldElement square(); public abstract ECFieldElement invert(); public abstract ECFieldElement sqrt(); public String toString() { return this.x.toString(2); } public static class Fp extends ECFieldElement { BigInteger q; public Fp(BigInteger q, BigInteger x) { super(x); if (x.compareTo(q) >= 0) { throw new IllegalArgumentException("x value too large in field element"); } this.q = q; } /** * return the field name for this field. * * @return the string "Fp". */ public String getFieldName() { return "Fp"; } public BigInteger getQ() { return q; } public ECFieldElement add(ECFieldElement b) { return new Fp(q, x.add(b.x).mod(q)); } public ECFieldElement subtract(ECFieldElement b) { return new Fp(q, x.subtract(b.x).mod(q)); } public ECFieldElement multiply(ECFieldElement b) { return new Fp(q, x.multiply(b.x).mod(q)); } public ECFieldElement divide(ECFieldElement b) { return new Fp(q, x.multiply(b.x.modInverse(q)).mod(q)); } public ECFieldElement negate() { return new Fp(q, x.negate().mod(q)); } public ECFieldElement square() { return new Fp(q, x.multiply(x).mod(q)); } public ECFieldElement invert() { return new Fp(q, x.modInverse(q)); } // D.1.4 91 /** * return a sqrt root - the routine verifies that the calculation * returns the right value - if none exists it returns null. */ public ECFieldElement sqrt() { if (!q.testBit(0)) { throw new RuntimeException("not done yet"); } // p mod 4 == 3 if (q.testBit(1)) { // z = g^(u+1) + p, p = 4u + 3 ECFieldElement z = new Fp(q, x.modPow(q.shiftRight(2).add(ONE), q)); return z.square().equals(this) ? z : null; } // p mod 4 == 1 BigInteger qMinusOne = q.subtract(ECConstants.ONE); BigInteger legendreExponent = qMinusOne.shiftRight(1); if (!(x.modPow(legendreExponent, q).equals(ECConstants.ONE))) { return null; } BigInteger u = qMinusOne.shiftRight(2); BigInteger k = u.shiftLeft(1).add(ECConstants.ONE); BigInteger Q = this.x; BigInteger fourQ = Q.shiftLeft(2).mod(q); BigInteger U, V; Random rand = new Random(); do { BigInteger P; do { P = new BigInteger(q.bitLength(), rand); } while (P.compareTo(q) >= 0 || !(P.multiply(P).subtract(fourQ).modPow(legendreExponent, q).equals(qMinusOne))); BigInteger[] result = lucasSequence(q, P, Q, k); U = result[0]; V = result[1]; if (V.multiply(V).mod(q).equals(fourQ)) { // Integer division by 2, mod q if (V.testBit(0)) { V = V.add(q); } V = V.shiftRight(1); //assert V.multiply(V).mod(q).equals(x); return new ECFieldElement.Fp(q, V); } } while (U.equals(ECConstants.ONE) || U.equals(qMinusOne)); return null; // BigInteger qMinusOne = q.subtract(ECConstants.ONE); // BigInteger legendreExponent = qMinusOne.shiftRight(1); //divide(ECConstants.TWO); // if (!(x.modPow(legendreExponent, q).equals(ECConstants.ONE))) // { // return null; // } // // Random rand = new Random(); // BigInteger fourX = x.shiftLeft(2); // // BigInteger r; // do // { // r = new BigInteger(q.bitLength(), rand); // } // while (r.compareTo(q) >= 0 // || !(r.multiply(r).subtract(fourX).modPow(legendreExponent, q).equals(qMinusOne))); // // BigInteger n1 = qMinusOne.shiftRight(2); //.divide(ECConstants.FOUR); // BigInteger n2 = n1.add(ECConstants.ONE); //q.add(ECConstants.THREE).divide(ECConstants.FOUR); // // BigInteger wOne = WOne(r, x, q); // BigInteger wSum = W(n1, wOne, q).add(W(n2, wOne, q)).mod(q); // BigInteger twoR = r.shiftLeft(1); //ECConstants.TWO.multiply(r); // // BigInteger root = twoR.modPow(q.subtract(ECConstants.TWO), q) // .multiply(x).mod(q) // .multiply(wSum).mod(q); // // return new Fp(q, root); } // private static BigInteger W(BigInteger n, BigInteger wOne, BigInteger p) // { // if (n.equals(ECConstants.ONE)) // { // return wOne; // } // boolean isEven = !n.testBit(0); // n = n.shiftRight(1);//divide(ECConstants.TWO); // if (isEven) // { // BigInteger w = W(n, wOne, p); // return w.multiply(w).subtract(ECConstants.TWO).mod(p); // } // BigInteger w1 = W(n.add(ECConstants.ONE), wOne, p); // BigInteger w2 = W(n, wOne, p); // return w1.multiply(w2).subtract(wOne).mod(p); // } // // private BigInteger WOne(BigInteger r, BigInteger x, BigInteger p) // { // return r.multiply(r).multiply(x.modPow(q.subtract(ECConstants.TWO), q)).subtract(ECConstants.TWO).mod(p); // } private static BigInteger[] lucasSequence( BigInteger p, BigInteger P, BigInteger Q, BigInteger k) { int n = k.bitLength(); int s = k.getLowestSetBit(); BigInteger Uh = ECConstants.ONE; BigInteger Vl = ECConstants.TWO; BigInteger Vh = P; BigInteger Ql = ECConstants.ONE; BigInteger Qh = ECConstants.ONE; for (int j = n - 1; j >= s + 1; --j) { Ql = Ql.multiply(Qh).mod(p); if (k.testBit(j)) { Qh = Ql.multiply(Q).mod(p); Uh = Uh.multiply(Vh).mod(p); Vl = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p); Vh = Vh.multiply(Vh).subtract(Qh.shiftLeft(1)).mod(p); } else { Qh = Ql; Uh = Uh.multiply(Vl).subtract(Ql).mod(p); Vh = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p); Vl = Vl.multiply(Vl).subtract(Ql.shiftLeft(1)).mod(p); } } Ql = Ql.multiply(Qh).mod(p); Qh = Ql.multiply(Q).mod(p); Uh = Uh.multiply(Vl).subtract(Ql).mod(p); Vl = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p); Ql = Ql.multiply(Qh).mod(p); for (int j = 1; j <= s; ++j) { Uh = Uh.multiply(Vl).mod(p); Vl = Vl.multiply(Vl).subtract(Ql.shiftLeft(1)).mod(p); Ql = Ql.multiply(Ql).mod(p); } return new BigInteger[]{ Uh, Vl }; } public boolean equals(Object other) { if (other == this) { return true; } if (!(other instanceof ECFieldElement.Fp)) { return false; } ECFieldElement.Fp o = (ECFieldElement.Fp)other; return q.equals(o.q) && x.equals(o.x); } public int hashCode() { return q.hashCode() ^ x.hashCode(); } } /** * Class representing the Elements of the finite field * F2m in polynomial basis (PB) * representation. Both trinomial (TPB) and pentanomial (PPB) polynomial * basis representations are supported. Gaussian normal basis (GNB) * representation is not supported. */ public static class F2m extends ECFieldElement { /** * Indicates gaussian normal basis representation (GNB). Number chosen * according to X9.62. GNB is not implemented at present. */ public static final int GNB = 1; /** * Indicates trinomial basis representation (TPB). Number chosen * according to X9.62. */ public static final int TPB = 2; /** * Indicates pentanomial basis representation (PPB). Number chosen * according to X9.62. */ public static final int PPB = 3; /** * TPB or PPB. */ private int representation; /** * The exponent m of F2m. */ private int m; /** * TPB: The integer k where xm + * xk + 1 represents the reduction polynomial * f(z).
* PPB: The integer k1 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z).
*/ private int k1; /** * TPB: Always set to 0
* PPB: The integer k2 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z).
*/ private int k2; /** * TPB: Always set to 0
* PPB: The integer k3 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z).
*/ private int k3; /** * Constructor for PPB. * @param m The exponent m of * F2m. * @param k1 The integer k1 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z). * @param k2 The integer k2 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z). * @param k3 The integer k3 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z). * @param x The BigInteger representing the value of the field element. */ public F2m( int m, int k1, int k2, int k3, BigInteger x) { super(x); if ((k2 == 0) && (k3 == 0)) { this.representation = TPB; } else { if (k2 >= k3) { throw new IllegalArgumentException( "k2 must be smaller than k3"); } if (k2 <= 0) { throw new IllegalArgumentException( "k2 must be larger than 0"); } this.representation = PPB; } if (x.signum() < 0) { throw new IllegalArgumentException("x value cannot be negative"); } this.m = m; this.k1 = k1; this.k2 = k2; this.k3 = k3; } /** * Constructor for TPB. * @param m The exponent m of * F2m. * @param k The integer k where xm + * xk + 1 represents the reduction * polynomial f(z). * @param x The BigInteger representing the value of the field element. */ public F2m(int m, int k, BigInteger x) { // Set k1 to k, and set k2 and k3 to 0 this(m, k, 0, 0, x); } public String getFieldName() { return "F2m"; } /** * Checks, if the ECFieldElements a and b * are elements of the same field F2m * (having the same representation). * @param a field element. * @param b field element to be compared. * @throws IllegalArgumentException if a and b * are not elements of the same field * F2m (having the same * representation). */ public static void checkFieldElements( ECFieldElement a, ECFieldElement b) { if ((!(a instanceof F2m)) || (!(b instanceof F2m))) { throw new IllegalArgumentException("Field elements are not " + "both instances of ECFieldElement.F2m"); } if ((a.x.signum() < 0) || (b.x.signum() < 0)) { throw new IllegalArgumentException( "x value may not be negative"); } ECFieldElement.F2m aF2m = (ECFieldElement.F2m)a; ECFieldElement.F2m bF2m = (ECFieldElement.F2m)b; if ((aF2m.m != bF2m.m) || (aF2m.k1 != bF2m.k1) || (aF2m.k2 != bF2m.k2) || (aF2m.k3 != bF2m.k3)) { throw new IllegalArgumentException("Field elements are not " + "elements of the same field F2m"); } if (aF2m.representation != bF2m.representation) { // Should never occur throw new IllegalArgumentException( "One of the field " + "elements are not elements has incorrect representation"); } } /** * Computes z * a(z) mod f(z), where f(z) is * the reduction polynomial of this. * @param a The polynomial a(z) to be multiplied by * z mod f(z). * @return z * a(z) mod f(z) */ private BigInteger multZModF(final BigInteger a) { // Left-shift of a(z) BigInteger az = a.shiftLeft(1); if (az.testBit(this.m)) { // If the coefficient of z^m in a(z) equals 1, reduction // modulo f(z) is performed: Add f(z) to to a(z): // Step 1: Unset mth coeffient of a(z) az = az.clearBit(this.m); // Step 2: Add r(z) to a(z), where r(z) is defined as // f(z) = z^m + r(z), and k1, k2, k3 are the positions of // the non-zero coefficients in r(z) az = az.flipBit(0); az = az.flipBit(this.k1); if (this.representation == PPB) { az = az.flipBit(this.k2); az = az.flipBit(this.k3); } } return az; } public ECFieldElement add(final ECFieldElement b) { // No check performed here for performance reasons. Instead the // elements involved are checked in ECPoint.F2m // checkFieldElements(this, b); if (b.x.signum() == 0) { return this; } return new F2m(this.m, this.k1, this.k2, this.k3, this.x.xor(b.x)); } public ECFieldElement subtract(final ECFieldElement b) { // Addition and subtraction are the same in F2m return add(b); } public ECFieldElement multiply(final ECFieldElement b) { // Left-to-right shift-and-add field multiplication in F2m // Input: Binary polynomials a(z) and b(z) of degree at most m-1 // Output: c(z) = a(z) * b(z) mod f(z) // No check performed here for performance reasons. Instead the // elements involved are checked in ECPoint.F2m // checkFieldElements(this, b); final BigInteger az = this.x; BigInteger bz = b.x; BigInteger cz; // Compute c(z) = a(z) * b(z) mod f(z) if (az.testBit(0)) { cz = bz; } else { cz = ECConstants.ZERO; } for (int i = 1; i < this.m; i++) { // b(z) := z * b(z) mod f(z) bz = multZModF(bz); if (az.testBit(i)) { // If the coefficient of x^i in a(z) equals 1, b(z) is added // to c(z) cz = cz.xor(bz); } } return new ECFieldElement.F2m(m, this.k1, this.k2, this.k3, cz); } public ECFieldElement divide(final ECFieldElement b) { // There may be more efficient implementations ECFieldElement bInv = b.invert(); return multiply(bInv); } public ECFieldElement negate() { // -x == x holds for all x in F2m return this; } public ECFieldElement square() { // Naive implementation, can probably be speeded up using modular // reduction return multiply(this); } public ECFieldElement invert() { // Inversion in F2m using the extended Euclidean algorithm // Input: A nonzero polynomial a(z) of degree at most m-1 // Output: a(z)^(-1) mod f(z) // u(z) := a(z) BigInteger uz = this.x; if (uz.signum() <= 0) { throw new ArithmeticException("x is zero or negative, " + "inversion is impossible"); } // v(z) := f(z) BigInteger vz = ECConstants.ONE.shiftLeft(m); vz = vz.setBit(0); vz = vz.setBit(this.k1); if (this.representation == PPB) { vz = vz.setBit(this.k2); vz = vz.setBit(this.k3); } // g1(z) := 1, g2(z) := 0 BigInteger g1z = ECConstants.ONE; BigInteger g2z = ECConstants.ZERO; // while u != 1 while (!(uz.equals(ECConstants.ZERO))) { // j := deg(u(z)) - deg(v(z)) int j = uz.bitLength() - vz.bitLength(); // If j < 0 then: u(z) <-> v(z), g1(z) <-> g2(z), j := -j if (j < 0) { final BigInteger uzCopy = uz; uz = vz; vz = uzCopy; final BigInteger g1zCopy = g1z; g1z = g2z; g2z = g1zCopy; j = -j; } // u(z) := u(z) + z^j * v(z) // Note, that no reduction modulo f(z) is required, because // deg(u(z) + z^j * v(z)) <= max(deg(u(z)), j + deg(v(z))) // = max(deg(u(z)), deg(u(z)) - deg(v(z)) + deg(v(z)) // = deg(u(z)) uz = uz.xor(vz.shiftLeft(j)); // g1(z) := g1(z) + z^j * g2(z) g1z = g1z.xor(g2z.shiftLeft(j)); // if (g1z.bitLength() > this.m) { // throw new ArithmeticException( // "deg(g1z) >= m, g1z = " + g1z.toString(2)); // } } return new ECFieldElement.F2m( this.m, this.k1, this.k2, this.k3, g2z); } public ECFieldElement sqrt() { throw new RuntimeException("Not implemented"); } /** * @return the representation of the field * F2m, either of * TPB (trinomial * basis representation) or * PPB (pentanomial * basis representation). */ public int getRepresentation() { return this.representation; } /** * @return the degree m of the reduction polynomial * f(z). */ public int getM() { return this.m; } /** * @return TPB: The integer k where xm + * xk + 1 represents the reduction polynomial * f(z).
* PPB: The integer k1 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z).
*/ public int getK1() { return this.k1; } /** * @return TPB: Always returns 0
* PPB: The integer k2 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z).
*/ public int getK2() { return this.k2; } /** * @return TPB: Always set to 0
* PPB: The integer k3 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z).
*/ public int getK3() { return this.k3; } public boolean equals(Object anObject) { if (anObject == this) { return true; } if (!(anObject instanceof ECFieldElement.F2m)) { return false; } ECFieldElement.F2m b = (ECFieldElement.F2m)anObject; return ((this.m == b.m) && (this.k1 == b.k1) && (this.k2 == b.k2) && (this.k3 == b.k3) && (this.representation == b.representation) && (this.x.equals(b.x))); } public int hashCode() { return x.hashCode() ^ m ^ k1 ^ k2 ^ k3; } } }